Resveratrol Enhances Airway Surface Liquid Depth in Sinonasal Epithelium by Increasing Cystic Fibrosis Transmembrane Conductance Regulator Open Probability
نویسندگان
چکیده
BACKGROUND Chronic rhinosinusitis engenders enormous morbidity in the general population, and is often refractory to medical intervention. Compounds that augment mucociliary clearance in airway epithelia represent a novel treatment strategy for diseases of mucus stasis. A dominant fluid and electrolyte secretory pathway in the nasal airways is governed by the cystic fibrosis transmembrane conductance regulator (CFTR). The objectives of the present study were to test resveratrol, a strong potentiator of CFTR channel open probability, in preparation for a clinical trial of mucociliary activators in human sinus disease. METHODS Primary sinonasal epithelial cells, immortalized bronchoepithelial cells (wild type and F508del CFTR), and HEK293 cells expressing exogenous human CFTR were investigated by Ussing chamber as well as patch clamp technique under non-phosphorylating conditions. Effects on airway surface liquid depth were measured using confocal laser scanning microscopy. Impact on CFTR gene expression was measured by quantitative reverse transcriptase polymerase chain reaction. RESULTS Resveratrol is a robust CFTR channel potentiator in numerous mammalian species. The compound also activated temperature corrected F508del CFTR and enhanced CFTR-dependent chloride secretion in human sinus epithelium ex vivo to an extent comparable to the recently approved CFTR potentiator, ivacaftor. Using inside out patches from apical membranes of murine cells, resveratrol stimulated an ~8 picosiemens chloride channel consistent with CFTR. This observation was confirmed in HEK293 cells expressing exogenous CFTR. Treatment of sinonasal epithelium resulted in a significant increase in airway surface liquid depth (in µm: 8.08+/-1.68 vs. 6.11+/-0.47,control,p<0.05). There was no increase CFTR mRNA. CONCLUSION Resveratrol is a potent chloride secretagogue from the mucosal surface of sinonasal epithelium, and hydrates airway surface liquid by increasing CFTR channel open probability. The foundation for a clinical trial utilizing resveratrol as a therapeutic intervention to increase mucociliary transport and airway surface liquid hydration in sinus disease is strongly supported by these findings.
منابع مشابه
Resveratrol ameliorates abnormalities of fluid and electrolyte secretion in a hypoxia-Induced model of acquired CFTR deficiency.
OBJECTIVE/HYPOTHESIS Ineffective mucociliary clearance (MCC) is a common pathophysiologic process that underlies airway inflammation and infection. A dominant fluid and electrolyte secretory pathway in the nasal airways is governed by the cystic fibrosis transmembrane conductance regulator (CFTR). Decreased transepithelial Cl(-) transport secondary to an acquired CFTR deficiency may exacerbate ...
متن کاملVitamin C controls the cystic fibrosis transmembrane conductance regulator chloride channel.
Vitamin C (l-ascorbate) is present in the respiratory lining fluid of human lungs, and local deficits occur during oxidative stress. Here we report a unique function of vitamin C on the cystic fibrosis (CF) transmembrane conductance regulator (CFTR), a cAMP-dependent Cl channel that regulates epithelial surface fluid secretion. Vitamin C (100 microM) induced the openings of CFTR Cl channels by ...
متن کاملAnalysis of c.3369+213TA[7-56] and D7S523 microsatellites linked to Cystic Fibrosis Transmembrane Regulator.
Cystic fibrosis (CF) is a life-limiting autosomal recessive disorder affecting principally respiratory and digestive system . It is caused by cystic fibrosis transmembrane conductance regulator (CFTR) gene mutation. The aim of this study was to determine the extent of repeat numbers and the degree of heterozygosity for c.3499+200TA(7_56) and D7S523 located in intron 17b and 1 cM proximal to t...
متن کاملRegulation of Cystic Fibrosis Transmembrane Conductance Regulator by MicroRNA-145, -223, and -494 Is Altered in DF508 Cystic Fibrosis Airway Epithelium
متن کامل
Characterization of Defects in Ion Transport and Tissue Development in Cystic Fibrosis Transmembrane Conductance Regulator (CFTR)-Knockout Rats
Animal models for cystic fibrosis (CF) have contributed significantly to our understanding of disease pathogenesis. Here we describe development and characterization of the first cystic fibrosis rat, in which the cystic fibrosis transmembrane conductance regulator gene (CFTR) was knocked out using a pair of zinc finger endonucleases (ZFN). The disrupted Cftr gene carries a 16 base pair deletion...
متن کامل